
Managing the Solution Stack: Open

Source and Closed Source Together

Russell Pavlicek

Senior Linux Architect

Professional Services

Cassatt Corporation

pavlicek@linuxprofessionalsolutions.com

Who is this Fat Geek?

● Linux user since 1995
● 20+ years in industry (Cassatt, DEC,

Compaq, Gannett)
● Former Linux columnist for Infoworld,

Processor magazines
● Authored one of the first books to explain

the business of Open Source

What does he know about

mixed solution stacks?

•Working for Cassatt Corporation
– Agile automated infrastructure solution (booth

1510 on the Expo floor)
– Closed source application (Collage) running

atop RHEL
– Our product fits in this category
– Most of our customers are using mixed Open

Source/closed source solution stacks

What's the problem?

● The age of the closed source solution stack
is essentially over

● Most current solutions use a blend of Open
Source and closed source elements

● How do you know when Open Source
elements make more sense than closed
source – or vice versa?

● What are the risks?

Some definition of terms

● Open Source
– Software where the source code can be

examined, modified, and redistributed without

cost
– Examples include: the Linux kernel, Apache

webserver, Sendmail, Perl, Python, PHP,

anything covered by an OSI-approved license,

anything labeled “Free Software” by the FSF

More definition of terms

● Closed Source
– Any piece of software which does not rise to the

watermark set by Open Source
– Examples include: the Java runtime, Oracle

database, 99+% of the code produced by

Microsoft (including their Shared Source

initiative)

The old solution stack

● From about 1980 until the late 1990s, most

solution stacks were closed source
– Commercial applications with a variety of

licensing terms and costs.
– Little control over software direction
– Cost control a major focus of IT management
– Invasive Business Software Alliance audits

feared

The new solution stack

● Mixture of Open Source and closed source

elements
– Potentially much less cost in licensing
– Greater control over software development

direction
– Audits become much more tolerable; license

bookkeeping greatly simplified

A Traditional Stack Diagram

Operating System Layer

Utility Support Layer

Simple App Simple App Foundation App

Middleware

Major App Major App

Water level: 1990s

Operating System Layer

Utility Support Layer

Simple App Simple App Foundation App

Middleware

Major App Major App

Water level: Last Few Years

Operating System Layer

Utility Support Layer

Simple App Simple App Foundation App

Middleware

Major App Major App

Water level: Future

Operating System Layer

Utility Support Layer

Simple App Simple App Foundation App

Middleware

Major App Major App

Designing a mixed stack

● Rule: The waterlevel of common Open
Source infrastructure will rise over time

● Application: Plan on increasing Open
Source components over time
– The reality of history; the trend is established
– As the fundamental levels become solid,

development increases on the application stack

Designing a mixed stack

● Rule: Optimize Modularity
● Application: Open Source is by nature a

modularity enabler
– Code reuse brings on modular practices
– Modular code makes replacement of

components easy
– Avoid vendor lock-in
– Maximize control: customize your stack

Designing a mixed stack

● Rule: Modularity enhances compatibility
● Application: Open Source is capable of

partial stack upgrade
– It is not always necessary to upgrade the entire

stack when upgrading one component
– Better control while avoiding the “upgrade

whirlwind”

Designing a mixed stack

● Rule: Don't flush your toilets with Perrier
● Application: Don't pay top dollar for common

infrastructure; use Open Source
– Maximize ROI by treating Open Source like a

public utility (Doc Searls)
– Low cost infrastructure, available to all

Designing a mixed stack

● Rule: Pay for performance
● Application: If you need exceptional

performance in a particular area, this could
be an area to evaluate closed source
options
– Classic example: Oracle
– But note that even Oracle has contenders:

Enterprise DB, Greenplum on Expo floor

Designing a mixed stack

● Rule: Secret sauce costs money
● Application: If something is really a “secret”,

you need to buy it or write it
– Before you buy (closed source), make sure it

really is valuable
– If you write it, consider bolting it to an Open

Source base; you don't need to publish your
secret unless you redistribute the code (GPL)

– Can save huge dollars allowing community to
develop the non-secret part of the software

Designing a mixed stack

● Rule: The Future is not protected if the Past
is neglected

● Application: Archival data should be in open
formats
– Open Source gives you open formats and the

code needed to read it
– Critical for governments; important for business
– Information locked in a proprietary format

accessed by an obsolete program on an
unavailable operating system is lost

Designing a mixed stack

● Rule: Upgrades are easiest when the stack
in intact

● Application: Consider simplifying stack per
machine when upgradability is at risk
– Linux easiest to upgrade when you stay fairly

close to the as-distributed state
– Some closed source products certify to certain

distributions and/or certain kernels; conflicts can
occur when products require different versions

– Consider virtualization to segment multiple
closed source products into VM “devices”

Designing a mixed stack

● Rule: Using an unpopular Open Source tool
is risky, but using an unpopular closed
source tool is deadly

● Application: If you use unpopular tools,
they should not be closed source
– Closed source tools rarely survive the death of

the product or the company which provided it
– Software escrow does not solve the ancient tool

chain problem
– Open Source tools can survive long after the

provider is gone: e.g., Eazel and Nautilus

Questions and Answers

● Discussion
● Latest version of these slides will be

available on linuxprofessionalsolutions.com

after the conference
– Just Google “russell pavlicek bibliography” and

you'll find the right page

