I Managing the Solution Stack: Open
I Source and Closed Source Together

Russell Pavlicek
Senior Linux Architect
Professional Services
Cassatt Corporation
pavlicek@linuxprofessional sol utions.com



Who iIs this Fat Geek?

Linux user since 1995

20+ years In industry (Cassatt, DEC,
Compag, Gannett)

Former Linux columnist for Infoworld,
Processor magazines

Authored one of the first books to explain
the business of Open Source



What does he know about
mixed solution stacks?

® Working for Cassatt Corporation

- Agile automated infrastructure solution (booth
1510 on the Expo floor)

- Closed source application (Collage) running
atop RHEL

— Our product fits in this category

— Most of our customers are using mixed Open
Source/closed source solution stacks



What's the problem?

The age of the closed source solution stack
IS essentially over

Most current solutions use a blend of Open
Source and closed source elements

How do you know when Open Source
elements make more sense than closed
source — or vice versa?

What are the risks?



Some definition of terms

* Open Source

- Software where the source code can be
examined, modified, and redistributed without
cost

- Examples include: the Linux kernel, Apache
webserver, Sendmail, Perl, Python, PHP,
anything covered by an OSl-approved license,
anything labeled “Free Software” by the FSF




More definition of terms

* Closed Source
— Any piece of software which does not rise to the
watermark set by Open Source
- Examples include: the Java runtime, Oracle
database, 99+% of the code produced by
Microsoft (including their Shared Source
Initiative)



The old solution stack

°* From about 1980 until the late 1990s, most

solution stacks were closed source
- Commercial applications with a variety of
licensing terms and costs.
— Little control over software direction
— Cost control a major focus of IT management
- Invasive Business Software Allilance audits
feared



The new solution stack

* Mixture of Open Source and closed source

elements

- Potentially much less cost in licensing

— Greater control over software development
direction

- Audits become much more tolerable; license
bookkeeping greatly simplified



A Traditional Stack Diagram




Water level: 1990s




Water level: Last Few Years




Water level: Future

Middleware
Simple App Simple App Foundation App

Operating System Layer

Utility Support Layer



Designing a mixed stack

* Rule: The waterlevel of common Open
Source Infrastructure will rise over time
* Application: Plan on increasing Open

Source components over time

- The reality of history; the trend Is established

- As the fundamental levels become solid,
development increases on the application stack



Designing a mixed stack

* Rule: Optimize Modularity

* Application: Open Source Is by nature a

modularity enabler

— Code reuse brings on modular practices

- Modular code makes replacement of
components easy

— Avoid vendor lock-in

- Maximize control: customize your stack



Designing a mixed stack

°* Ru
QAp

e: Modularity enhances compatibility

nlication: Open Source Is capable of

partial stack upgrade

- It Is not always necessary to upgrade the entire
stack when upgrading one component

— Better control while avoiding the “upgrade
whirlwind”



Designing a mixed stack

* Rule: Don't flush your toilets with Perrier
* Application: Don't pay top dollar for common

Infrastructure; use Open Source

- Maximize ROI by treating Open Source like a
public utility (Doc Searls)

- Low cost infrastructure, available to all



Designing a mixed stack

* Rule: Pay for performance

* Application: If you need exceptional
performance in a particular area, this could
be an area to evaluate closed source
options
- Classic example: Oracle

- But note that even Oracle has contenders:
Enterprise DB, Greenplum on Expo floor



Designing a mixed stack

° Rule: Secret sauce costs money
* Application: If something is really a “secret”,

you need to buy it or write it

— Before you buy (closed source), make sure it
really is valuable

— If you write it, consider bolting it to an Open
Source base; you don't need to publish your
secret unless you redistribute the code (GPL)

— Can save huge dollars allowing community to
develop the non-secret part of the software



Designing a mixed stack

°* Rule: The Future is not protected If the Past

IS neglected
* Application: Archival data should be in open

formats
— Open Source gives you open formats and the

code needed to read it
— Critical for governments; important for business

- Information locked in a proprietary format
accessed by an obsolete program on an
unavailable operating system is lost



Designing a mixed stack

°* Rule: Upgrades are easiest when the stack
In Intact
* Application: Consider simplifying stack per
machine when upgradabillity Is at risk
- Linux easiest to upgrade when you stay fairly
close to the as-distributed state
- Some closed source products certify to certain
distributions and/or certain kernels; conflicts can
occur when products require different versions

— Consider virtualization to segment multiple
closed source products into VM “devices”



Designing a mixed stack

* Rule: Using an unpopular Open Source tool
IS risky, but using an unpopular closed

source tool is deadly
* Application: If you use unpopular tools,
they should not be closed source
— Closed source tools rarely survive the death of
the product or the company which provided it
- Software escrow does not solve the ancient tool

chain problem
— Open Source tools can survive long after the

provider is gone: e.g., Eazel and Nautilus



Questions and Answers

* Discussion
* |atest version of these slides will be

avallable on linuxprofessionalsolutions.com
after the conference

- Just Google “russell pavlicek bibliography” and
you'll find the right page



